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Abstract. An important feature of the Arctic is large spatial heterogeneity in active layer conditions, which is generally 

poorly represented by global models and can lead to large uncertainties in predicting regional ecosystem responses and 

climate feedbacks. In this study, we developed a spatially integrated modelling and analysis framework combining field 

observations, local scale (~ 50 m resolution) active layer thickness (ALT) and soil moisture maps derived from airborne low 15 

frequency (L+P-band) radar measurements, and global satellite environmental observations to investigate the ALT 

sensitivity to recent climate trends and landscape heterogeneity in Alaska. Modelled ALT results show good correspondence 

with in situ measurements in higher permafrost probability (PP ≥ 70%) areas (n = 33, R = 0.60, mean bias = 1.58 cm, RMSE 

= 20.32 cm), but with larger uncertainty in sporadic and discontinuous permafrost areas. The model results also reveal 

widespread ALT deepening since 2001, with smaller ALT increases in northern Alaska (mean trend = 0.32 ± 1.18 cm yr
-1

) 20 

and much larger increases (> 3 cm yr
-1

) across interior and southern Alaska. The positive ALT trend coincides with regional 

warming and a longer snow-free season (R = 0.60 ± 0.32). A spatially integrated analysis of the radar retrievals and model 

sensitivity simulations demonstrated that uncertainty in the spatial and vertical distribution of soil organic carbon (SOC) was 

the largest factor affecting modeled ALT accuracy, while soil moisture played a secondary role. Potential improvements in 

characterizing SOC heterogeneity, including better spatial sampling of soil conditions and advances in remote sensing of 25 

SOC and soil moisture, will enable more accurate predictions of active layer conditions and refinement of the modelling 

framework across a larger domain.  

1 Introduction   

Regional warming in the northern high latitudes is occurring at roughly twice the global rate, leading to widespread 

permafrost degradation (Jorgenson et al., 2006; Romanovsky et al., 2010) and substantial changes in hydrologic and 30 

ecosystem processes, including earlier and potentially longer growing seasons (Kim et al., 2012), expansion of tundra shrub 
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cover (Tape et al., 2006), changes in lake and wetland areas (Smith et al., 2005), and increasing thermokarst development 

(Liljedahl et al., 2016) and fire disturbances (Grosse et al., 2011). Thawing of permafrost can lead to widespread changes in 

the terrestrial water cycle, including alteration of water storage in surface reservoirs (including lakes, wetlands and ponds) 

and the active layer (Walvoord et al., 2016). These hydrologic shifts will likely trigger profound changes to almost every 

aspect of the Arctic biophysical system. 5 

 

Understanding the linkages between changes in the permafrost active layer and hydrologic and ecological processes is 

hampered by inconsistent information on active layer properties and dynamics over large regional extents. Traditional 

estimates of permafrost active layer conditions have relied on detailed ground surveys and measurements from sparse 

monitoring sites (Romanovsky et al., 2010; Osterkamp, 2007). More recent attempts have also incorporated ground-based 10 

remote sensing such as ground penetrating radar (GPR) and electrical resistivity measurements, but only over limited local 

extents (Sjöberg et al., 2015; Jorgenson and Grosse, 2016). Several studies have used empirical models driven by in situ 

ground observations and other geospatial datasets to provide fine-scale (< 100 m resolution) estimates of active layer and 

near-surface permafrost conditions (Mishra and Riley, 2014; Pastick et al., 2015). However, the accuracy of these methods is 

limited by the ability of sparse ground measurements representing landscape heterogeneity, and the resulting empirical 15 

models provide only limited insight and mechanistic understanding of underlying processes affecting active layer conditions. 

Detailed process models have been developed to address the above limitations, while the model accuracy is constrained by a 

lack of information for effective model parameterization, limited process understanding and coarse spatial scales of regional 

drivers (Yi et al., 2015; Jafarov and Schaefer, 2016). Particularly, large uncertainties remain in characterizing regional 

variability of subsurface soil organic carbon (SOC) content due to limited ground observations of this parameter in the Arctic 20 

region (Ping et al., 2008; Burnham and Sletten, 2010) and its effect on ground temperature evolution.   

 

An important feature of permafrost affected soils is the large spatial heterogeneity in permafrost and active layer conditions 

(Zona et al., 2011), which is generally poorly represented in global models. Capabilities for effective assessment and 

monitoring of active layer dynamics at the landscape scale (≤ 1 km) are currently lacking, but are needed to understand 25 

processes that govern the permafrost distribution in global carbon and climate models (Slater and Lawrence, 2013; Schuur et 

al., 2015; Jiang et al., 2016). Satellite remote sensing allows for regional detection and monitoring of surface and subsurface 

conditions related to active layer properties (Jorgenson and Grosse, 2016), and regionally refined satellite data driven models 

offer a potential means for regional assessment and monitoring of permafrost active layer properties at suitable landscape 

scales. The on-going NASA Arctic-Boreal Vulnerability Experiment (ABoVE) field campaign is collecting a wide range of 30 

datasets intended to support regional integration and synthesis of geospatial information and associated data products 

generated from airborne and spaceborne remote sensing, and detailed ground observations. A major goal of the ABoVE is to 

develop a modelling framework to improve representation of key processes in the Arctic and boreal landscape, and study 
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potential climate feedbacks via scaling of local processes to broader spatial extents using multi-scale and multi-sensor 

remote sensing (Goetz et al., 2011). 

 

Consistent with the ABoVE modelling goal, we developed a spatially integrated process modelling and data analysis 

framework to characterize regional patterns and recent (2001-2015) changes in active layer thickness (ALT) and underlying 5 

environmental controls across Alaska. The framework combines field measurements, local scale (~ 50 m resolution) active 

layer maps derived from airborne low frequency radar remote sensing, and landscape level (≥ 1 km resolution) 

environmental observations from global satellite microwave and optical-infrared sensors. Satellite sensor records including 

land surface temperature (LST) and snow cover extent (SCE) from MODIS (MODerate resolution Imaging 

Spectroradiometer) were used to drive a detailed 1-D soil heat transfer model, with soil thermal conductivity defined using 10 

daily surface and root-zone soil moisture observations from the SMAP (Soil Moisture Active and Passive) mission. The 

model was used to estimate regional patterns and recent changes in permafrost extent and ALT across Alaska at landscape 

scale (~ 1 km). A detailed model sensitivity assessment was conducted to determine the major sources of uncertainty in 

model simulated ALT and the primary factors influencing landscape scale ALT heterogeneity. Local scale ALT and soil 

moisture maps derived from low frequency (L+P-band) airborne radar backscatter measurements from NASA Uninhabited 15 

Aerial Vehicle Synthetic Aperture Radar (UAVSAR) and Airborne Microwave Observatory of Subcanopy and Subsurface 

(AirMOSS) sensors were used to evaluate the model sensitivity to finer-scale patterns in soil moisture and soil organic 

fraction.  

2 Methods  

2.1 The modelling framework  20 

The model simulations were conducted using a detailed soil process model (Rawlins et al., 2013; Yi et al., 2015) primarily 

driven by global satellite observation records including land surface “skin” temperature (LST), SCE and surface to root zone 

(≤ 1 m depth) soil moisture (SM). The soil process model defines up to 23 distinct soil layers down to 60 m below surface. 

The model uses a numerical approach to solve the 1-D heat transfer equation with phase change included to simulate 

snow/ground and subsurface thermal dynamics and temperature profiles. The model also accounts for the impacts of SOC 25 

content on soil thermal properties. The model was successfully applied to the pan-Arctic region for mapping permafrost 

extent and active layer dynamics, but at a relatively coarse (~ 25 km) spatial resolution (Yi et al., 2015). In the previous 

study, global coarse-resolution (~ 0.5°) reanalysis data, including surface air temperature and precipitation, were used as 

primary model inputs; the model soil thermal properties were regulated by soil moisture content simulated by a water 

balance model coupled with the soil thermal model (Rawlins et al., 2013). In the current study, however, the satellite-based 30 

LST time series were used with snow depth and density data from global reanalysis as major model drivers, with soil thermal 

properties parameterized using soil moisture profiles from a global data assimilation system.    
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The soil process model was run at 1-km resolution and 8-day time step consistent with the MODIS LST and SCE inputs 

(2000-2015). The MODIS LST and SCE data were largely affected by clouds in the study area; therefore 8-day temporal 

composite data were used as the model inputs. Our test runs indicated relatively small differences between model simulated 

soil temperatures at 8-day and daily time steps (Figure S1). Primary model inputs (Table 1) included MODIS (Collection 5) 5 

8-day composite 1-km LST (MOD11A2; Wan et al., 2015) and 500-m SCE records (MOD10A2; Hall and Riggs, 2016), 

SMAP 9-km NatureRun (Version 4) and Level 4 daily surface (≤ 5 cm depth) and root zone (0-1 m depth) soil moisture 

(L4SM, Reichle et al., 2016), and daily snow depth and snow density from MERRA-2 global (~ 0.5° resolution) reanalysis 

data (Gelaro et al., 2017). Model simulations were conducted over the Alaskan domain, encompassing an extent of 

approximately 1.21 million km
2
. Prior to the model simulations, all datasets were re-gridded to a consistent 1-km Albers 10 

equal area projection and 8-day time step for the Alaskan domain. The soil freezing/thawing depth for each 8-day time step 

was determined as the soil depth crossing the 0°C threshold based on the model simulated soil temperature profile. The ALT 

was defined as the maximum soil thawing depth throughout the year. 

2.2 Datasets 

2.2.1 Model inputs 15 

The MODIS LST and SMAP L4SM products were used to define model boundary conditions and soil thermal properties. 

MODIS LST was limited to clear-sky conditions, and cold biases were generally found with the MODIS LST data in the 

Arctic region during the winter season (Westermann et al., 2012). We derived an empirical correction scheme to mitigate the 

cold bias in MODIS LST data using MERRA-2 total cloud fraction and 2-m air temperature (T2M) data. The MODIS LST 

data were first aggregated to 0.5° resolution; a linear-regression equation was then derived between MERRA-2 cloud 20 

fraction and the difference between MODIS LST and MERRA-2 T2M during the sub-zero period for each biome type. The 

resulting regression equations were then applied to the original MODIS LST records for the sub-zero period. After bias 

correction, the MODIS mean LST bias during winter was reduced from -3.66 °C to -0.87 °C relative to in situ air 

temperature observations in Alaska. The SMAP NatureRun and L4SM surface and root zone soil moisture records were 

combined to define a continuous soil moisture time series for the entire study period. The SMAP NatureRun soil moisture 25 

record was used with the operational L4SM record because the SMAP L4SM operational record doesn’t begin until March 

2015. The SMAP NatureRun is generated using the same GMAO GEOS-5 land surface scheme and surface meteorology as 

the L4SM product (Reichle et al., 2017) and showed minimal discontinuity with the L4SM product over the Alaska domain. 

However, the NatureRun soil moisture product is derived without the benefit of model assimilated SMAP brightness 

temperature observations. 30 

 



5 

 

MERRA-2 daily snow depth and density data were used to account for the effects of seasonal snow cover evolution on the 

ground thermal regime, with changes in seasonal snow thermal properties derived from snow density (Yi et al., 2015). The 

soil thermal regime is particularly sensitive to changes in snow cover conditions during snow onset and offset periods, and 

large-scale reanalysis snow datasets generally have difficulty capturing snow cover spatial heterogeneity, especially during 

seasonal transition periods (Westermann et al., 2017). Therefore, the MODIS 500-m SCE data were used to adjust the 1-km 5 

snow depth and density estimates downscaled from the global reanalysis data (i.e. MERRA-2) during the snow onset/offset 

period. The snow cover status for each 1-km pixel was defined by choosing the observations that occurred most often based 

on the 500-m MOD10A2 product. There are substantial areas affected by cloud cover in the Arctic region, especially during 

the snow season; to minimize cloud effects, pixels identified as cloud contaminated were reclassified as either snow or non-

snow covered if the two temporally adjacent periods were both identified as cloud free and indicated consistent snow or non-10 

snow covered conditions. During snow melting and accumulation periods, each coarse MERRA-2 grid cell is generally not 

fully covered by snow and the MODIS SCE product was used to identify snow-free pixels and adjust the downscaled snow 

depth/density data for each 1-km pixel within the 0.5° MERRA-2 grid. A more sophisticated downscaling scheme should 

account for the difference between the MERRA-2 snow cover fraction and MODIS SCE. However, the timing of snow 

offset/onset derived from the downscaled 1-km MERRA-2 snow depth data showed similar spatial and temporal variations 15 

as the MODIS data (Figure S2), indicating that the simple downscaling scheme was generally effective. However, relatively 

large differences were observed in the timing of snow onset between the MODIS and MERRA-2 records, which was 

attributed to a greater prevalence of shallow and sporadic snow cover during initial snowpack development in the autumn. 

 

Other ancillary model inputs included the 30-m national land cover database 2011 (Jin et al., 2013), 50-m SOC estimates for 20 

Alaska (to 1-m depth; Mishra et al., 2016), and the global 9-km mineral soil texture data developed for the SMAP L4SM 

algorithm (De Lannoy et al., 2014). The dominant land cover type within each 1-km pixel was used to define the modelling 

domain, with open water and perennial ice/snow areas excluded from the model simulations. The soil texture and SOC data 

were used to define the soil properties including thermal conductivities and heat capacities. The SMAP soil texture dataset 

was generated using multiple soil databases, but primarily used information from the State Soil Geographic (STATSGO2) 25 

dataset in Alaska (De Lannoy et al., 2014). The sand and clay fraction data layers of this dataset were resampled to 1-km 

resolution and used to calculate soil thermal and hydraulic properties for the mineral soils (Lawrence and Slater, 2008). The 

Alaska SOC map was derived from a geospatial model involving more than 500 soil profile observations and spatial 

environmental variables, which provides comparable estimates of Alaskan SOC stocks as previous studies, but available at a 

much finer (50 m) resolution (Mishra et al., 2016). The SOC data was distributed through the top 10 model layers (≤ 1.05 m 30 

depth) following an exponentially decreasing curve (Jobbagy and Jackson, 2000; Hossain et al., 2015) to calculate the soil 

carbon fraction of each soil layer as described in Section 2.3.1. The soil physical properties for each soil layer were assumed 

to be a weighted combination of values of mineral soils and pure organic soils based on the estimated soil carbon fraction 

following Yi et al. (2015).   
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2.2.2 In situ data  

The soil thermal model, as a component of a coupled permafrost hydrology model, was previously validated using in situ 

soil temperature and soil moisture data from more than 20 Eddy Covariance (EC) tower sites across the pan-Arctic region 

(Yi et al., 2015). In this study, the model was validated using a limited set of in situ soil temperature measurements from 

three eddy covariance tower tundra monitoring sites in Alaska (Table S1). The modelled ALT estimates were also validated 5 

against in situ ALT measurements from the regional CALM (Circumpolar Active Layer Monitoring) network (Brown et al., 

2000). The three tower sites were selected mainly for having relatively good quality surface meteorology and temperature 

measurements, and supporting information on ground surface conditions. All three tower sites are underlain by permafrost, 

with relatively large soil organic layer thickness (OLT) and shallow seasonal thaw depth (~40 cm) (Euskirchen et al., 2012; 

Nakai et al., 2013; Oechel et al., 2014). For the tower site comparisons, the soil process model was parameterized and driven 10 

by local tower site meteorological and OLT observations when available. The OLT observations were used to define the 

depth of the model soil layers with 100% SOC fraction; this simplifying assumption was made in the absence of more 

detailed SOC profile measurements and to facilitate the model parameterization process. There are ~ 60 in situ CALM sites 

across the Alaska study domain, with 35 sites located in areas with permafrost probability ≥ 70% estimated from an ancillary 

permafrost map (Pastick et al., 2015).  15 

2.2.3 Airborne Radar retrievals 

We conducted an integrated analysis of in situ CALM measurements, soil process model simulations and airborne radar 

retrievals of soil moisture and ALT over a regional flight transect along the Dalton Highway (DH) in northern Alaska 

(Figure S3; 148.39-149.05°W, 68.78-70.40°N). The airborne radar retrievals were derived from combined (L+P-band) radar 

backscatter measurements (~50 m resolution) acquired from coordinated UAVSAR and AirMOSS flights acquired in 20 

October 2015, in preparation for the NASA ABoVE campaign. The combination of low-frequency vertically and 

horizontally polarized P-band (430 MHz) and L-band (1.2 GHz) radar backscatter retrievals provides enhanced sensitivity to 

active layer conditions, with a greater degree of freedom for distinguishing multiple soil parameters (Du et al., 2015; Chen et 

al., 2016). The airborne ALT retrievals were derived from the radar backscatter observations using a three-layer (frozen-

thawed-permafrost) soil dielectric model, which was parameterized to represent a frozen surface layer overlying a deeper 25 

thawed layer for partially frozen conditions in October. The thawed portion of the active layer in October was assumed to 

have the same depth to permafrost as the fully thawed active layer in August. An iterative model inversion scheme was used 

to estimate multiple active layer parameters by minimizing differences between the observed radar backscatter 

measurements and radar scattering model simulations. Initial sensitivity tests showed the capability of the model inversion in 

resolving subsurface active layer properties including surface freeze-thaw status, ALT and soil moisture in relation to 30 

independent in situ measurements from CALM sites.  
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2.3 Model sensitivity analysis 

2.3.1 Regional sensitivity analysis  

SOC fraction, soil moisture and snow cover conditions are among the most important factors controlling permafrost active 

layer conditions at the landscape scale (Lawrence and Slater, 2008; Jafarov et al., 2012; Zhang et al., 2014; Yi et al., 2015). 

Therefore, model sensitivity analyses were conducted to investigate the ALT sensitivity to uncertainties in regional SOC 5 

fraction, soil moisture and snow density (Figure 1). The modelled ALT uncertainties were calculated as the standard 

deviation between the model baseline simulations and a set of model sensitivity runs conducted over the study period by 

adding uncertainties into the regional SOC map (including total SOC content and vertical distribution), SM, and snow 

density data used as model inputs.  

 10 

For the SOC fraction, we accounted for uncertainties associated with the total SOC content and vertical distribution within 

the top 1-m soil profile due to substantial uncertainties in these properties from available soil inventory records for the Arctic 

region (Ping et al., 2008; Burnham and Sletten, 2010). An uncertainty range of ±5 kg C m
-2

 was assigned to the baseline 

SOC value from the ancillary SOC inventory data, based on reported uncertainties and comparisons with other Alaskan SOC 

estimates (Mishra et al., 2016). For each total SOC scenario, i.e. high, baseline, and low SOC scenarios, we performed three 15 

simulations to account for the uncertainties in the SOC vertical distribution: “surface”, baseline, and “even” allocation 

scenarios, with a lower SOC density within surface soils in the baseline and “even” allocation scenarios (Figure 1). The total 

SOC content was assumed to decrease exponentially with depth along the soil profile (Jobbagy and Jackson, 2000; 

Meersmans et al., 2009; Hossain et al., 2015); two parameters, including the SOC density at the surface and a vertical decay 

parameter (k), were used to determine the soil carbon density for each model soil layer (Meersmans et al., 2009): 20 

𝑆𝑂𝐶𝐶(𝑧) = 𝑆𝑂𝐶0 ∙ exp (−𝑘 ∙ 𝑧)                                                                                                                                              (1)  

Where SOCC is the estimated soil organic carbon density (kg C m
-3

) at a given soil depth, 𝑧 (cm); 𝑆𝑂𝐶0 and 𝑘 represent the 

surface SOC density and vertical decay rate (m
-1

) with increasing soil depth, respectively. The k values were determined 

based on the reported SOCC profile for different biome types (Jobbagy and Jackson, 2000; Meersmans et al., 2009; Hossain 

et al., 2015). Boreal forest is characterized as having generally greater surface SOC accumulation than tundra for relatively 25 

undisturbed conditions (Hossain et al., 2015) and was thus assigned a larger k value (Figure S4). The prescribed k values for 

the three SOC vertical distribution scenarios range from 0.03 to 0.05 m
-1

 for boreal forest and from 0.01 to 0.03 m
-1

 for 

tundra and other vegetation biomes (Table S2). The soil carbon or organic fraction for each soil layer was estimated as: 

𝑓𝑠𝑐,𝑖 = 𝑆𝑂𝐶𝐶(𝑧𝑖)/𝑆𝑂𝐶𝐶𝑚𝑎𝑥                                                                                                                                                      (2) 

Where 𝑆𝑂𝐶𝐶(𝑧𝑖) is the estimated soil carbon density at the centre depth (zi) of soil layer i and 𝑆𝑂𝐶𝐶𝑚𝑎𝑥 =130 kg m
-3

 is the 30 

maximum soil carbon density of peat soils (Farouki, 1981). Mineral soils may also contain a high soil carbon density but low 

soil organic fraction due to much higher bulk density. Therefore, the soil carbon fraction was adjusted based on an empirical 

relationship between soil carbon concentration and bulk density (Hossain et al., 2015) when the SOCC is below 40 kg C m
-3

. 
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There are large uncertainties associated with soil moisture and snow cover parameters derived from satellite observations 

and reanalysis data. Initial validation of the SMAP NatureRun and L4SM soil moisture products indicated an un-biased 

RMSE below 0.05 m
3
 m

-3
, though this was primarily assessed for mineral soil type conditions within the continental USA 

(Reichle et al., 2017). For the model sensitivity analysis, a soil wetness uncertainty (±10%) was assigned to the SMAP 5 

NatureRun and L4SM soil moisture records based on prior global soil moisture assessments using MERRA reanalysis data 

(Yi et al., 2011). The ±10% wetness uncertainty translates into an uncertainty of ~ 0.04 m
3
 m

-3
 for mineral soils and ~ 0.08 

m
3
 m

-3 
for organic soils which typically have a higher porosity. An uncertainty level of ±25% was assigned to the MERRA-2 

snow density estimates based on comparisons with snow density observations derived from GPS (Global Positioning 

System) L-band backscatter signals from six Plate Boundary Observatory (PBO) sites across Alaska (Figure S5). However, 10 

the uncertainty in snow density was limited to ±20 kg m
-3

 during the initial snow accumulation period, with snow density 

generally ranging from 100 to 200 kg m
-3

. Compared with snow density, snow depth shows much larger temporal variability 

(Sturm et al., 2010), which makes it difficult to assign temporally varying uncertainty levels for the snow depth estimates. 

However, the above scheme partially accounts for uncertainties in the snow depth data due to a positive correlation between 

snow depth and density at longer time scales (McCreight and Small, 2014). 15 

 

For both model baseline simulations and sensitivity runs, the model was spun-up for 50 years to bring the top 10-m soil 

temperature profile into dynamic equilibrium with model inputs for the year 2000, followed by a transit run from 2001 to 

2015. Different model spin-up schemes may have a large impact on the model simulations; therefore, an additional 

initialization scheme was tested for the baseline model simulation. Because there were no data available from MODIS and 20 

SMAP NatureRun records prior to year 2000, the model was first initialized using MERRA-2 surface meteorology including 

air temperature, SM and snow data from 1980 to 1999, followed by a model transit run from 2000 to 2015 using the MODIS 

LST, SMAP SM and MERRA-2 snow data. The MODIS LST and MERRA-2 surface air temperature records showed 

overall consistent regional mean temperatures during the overlapping period. The two model spin-up schemes produced very 

similar regional ALT estimates for the year 2000 initial conditions; therefore, only the model simulations and results based 25 

on the first spin-up scheme were presented.  

2.3.2 Modeled ALT sensitivity to landscape heterogeneity within the airborne flight transect  

An integrated analysis of in situ ground measurements, airborne radar retrievals and soil process model simulations was 

conducted to verify modeled ALT simulations in relation to other observations and investigate the ALT sensitivity to spatial 

variability in soil organic carbon fraction and soil moisture. We selected four in situ CALM sites located within the airborne 30 

radar DH sub-region acquired in October 2015 for ALT comparisons with model simulations and radar retrievals (Table 2). 

Additional CALM sites are located within the DH sub-region (Figure S3); these sites are generally located near the 

validation sites but had very different landscape properties (including SOC fraction and soil saturation degree) from the 
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model inputs and radar retrievals, and were therefore not selected for the model comparisons. In particular, the Sagwon Hills 

MAT site was excluded due to potentially large uncertainties in the radar ALT retrievals (21.0 ± 0.07 cm) due to reduced 

radar penetration and ALT sensitivity under very wet conditions (radar SM retrievals: 0.47 m
3
 m

-3
) as indicated by a 

significant negative correlation (R = -0.47, p < 0.1) between the radar ALT and SM retrievals within the ~1 km grid cell (18 

× 18 pixels). 5 

 

A model sensitivity analysis was conducted within the DH sub-region, which covers the area between 69.5°N and 70°N. 

This region was selected on the basis of having relatively higher radar SM and ALT retrieval accuracy (Figure S3). Above 

70°N, the radar retrievals indicate very low SM levels (< 0.2 m
3
 m

-3
), likely due to active layer freezing in October. Below 

69.5°N, the very wet soil conditions may introduce larger uncertainties in the radar ALT retrievals as discussed above. For 10 

the model sensitivity analysis, we first calibrated the soil porosity and active layer soil saturation degree over the DH sub-

region by minimizing root mean square error (RMSE) differences between the spatially aggregated radar ALT retrievals and 

model ALT simulations derived using regionally averaged SOC, LST, and snow properties inputs. We then compared the 

spatial distributions of the 1-km aggregated airborne radar ALT retrievals and the 1-km model simulations to determine the 

ALT sensitivity to relatively coarse regional drivers including LST, soil wetness (% volumetric) and SOC fraction. Three 15 

model sensitivity runs were performed (Table 3). The model was first driven using 1-km MODIS LST inputs, but with 

regionally averaged SOC, snow and soil wetness conditions (Run1). The model was then driven using both 1-km MODIS 

LST and soil wetness derived using the above soil porosity estimate and radar-retrieved volumetric soil moisture, with 

regionally averaged SOC and snow conditions (Run2). The SOC map (Mishra et al., 2016) indicates high SOC levels (mean 

= 45 kg C m
-2

) with low spatial variability ranging from 40 to 50 kg C m
-2

 in this area. However, the soil inventory record 20 

may not adequately account for fine-scale variability in the SOC content that could result from local soil wetness variability 

(Mishra and Riley, 2015). Therefore, an additional model simulation (Run3) was conducted with similar drivers as Run1, but 

with a larger range of variability in the SOC fraction. Specifically, the Run3 scenario assumes the regional SOC distribution 

follows the statistical distribution of radar retrieved soil moisture across the DH sub-region from 69.5-70°N (Figure S3 c), 

resulting in an estimated SOC range from 21
 
to 69 kg C m

-2
, and a mean value of 45 kg C m

-2
. This statistical distribution 25 

was similar to the OLT distribution observed from field sampling data in northern Canada (Zhang et al., 2014). 

3. Results  

3.1 Regional ALT validation  

3.1.1 Comparison with in situ measurements 

The model simulated soil temperatures at the selected tower sites using local site meteorology and prescribed SOC fractions 30 

based on in situ OLT data showed favourable performance in relation to the in situ measurements, with mean R values above 
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0.90 and mean RMSE values less than 2.5 °C (Table S3; Figure S6-S7). The model simulated maximum soil thaw depth (i.e. 

ALT) was within the ALT uncertainty range from the in situ data (Figure 2). At the boreal forest site, the model simulated 

ALT (81 ± 15 cm) during the study period (2001-2015) was much larger than the ALT value reported at the tower site (~ 43 

cm, Nakai et al., 2013); however, the model simulated ALT was close to the ALT (74 ± 17 cm) calculated from the in situ 

soil temperature measurements during the observation period (2011-2013). The seasonality of the model simulated soil thaw 5 

depth also generally followed the pattern of soil thaw depth calculated from the in situ soil temperature observations (Figure 

S8). However, limited deep soil temperature measurements at the site (only available at 40 cm and 100 cm) may contribute 

significant uncertainty to the calculated soil thawing depth. At the two tundra sites, the model simulated ALT generally falls 

within the range of ALT values reported at the tower sites. At the AK-Imn site, the model simulated mean ALT (47 ± 8 cm) 

was slightly shallower than the observations (53 ± 5 cm) at the CALM site, and the IMNAVAIT 1-km grid cell 10 

encompassing the tower site. At the US-Atq site, the model simulated mean ALT (37 ± 9 cm) was close to the in situ ALT (~ 

40 cm) reported by Oechel et al. (2014). The model simulations at the two tundra sites showed overall later soil thaw onset in 

spring and earlier autumn soil freeze onset than the boreal forest site, resulting in a shallower ALT. 

 

The model simulated mean ALT generally increased with decreasing latitude and permafrost probability (PP) indicated by a 15 

satellite and soil inventory based PP map (Pastick et al., 2015, Figure 3b), with relatively shallow ALT values in areas with 

higher PP, including the Alaska North Slope and Seward Peninsula, and deeper ALT values in sporadic and isolated 

permafrost areas (i.e. PP < 50%) including most of the Alaska interior and southwestern region (Figure 3). The model 

showed better performance against in situ ALT measurements from CALM sites with higher PP. Sites without a consistent 

presence of permafrost within 3-m surface soils during the study period were excluded from the comparisons and were 20 

mostly distributed in areas with PP < 50%. A total of 51 CALM sites meeting the validation criteria were used for the model 

comparisons, while 33 of these sites were located in areas with PP ≥ 70%. The modelled ALT was generally deeper than the 

ALT observations for sites located in areas with PP < 70%. The modelled ALT showed relatively low correspondence with 

the in situ measurements when all 51 sites were included (R = 0.46; mean bias = 17.39 cm; RMSE = 40.51 cm), but with 

better agreement for sites located in areas with PP ≥ 70% (R = 0.60; mean bias = 1.58 cm; RMSE = 20.32 cm). Larger 25 

differences between model simulations and in situ ALT measurements in areas with lower permafrost probability is not 

unexpected due to strong surface heterogeneity in permafrost conditions, leading to larger discrepancy between model 

simulations representing a single ALT value for each 1-km
2
 grid cell and the point-scale measurements. In those areas, the 

satellite and soil inventory based PP map indicated permafrost occurrence within 1-m surface soils well below 100%, while 

the in situ measurements showed ALT generally shallower than 1m (Fig. 3d).  30 

3.1.2 Integrated analysis of radar retrievals and model simulations 

The modelled ALT results were similar to the in situ ALT measurements and airborne radar retrievals within the DH sub-

region (Figure 4). The DH sub-region is located within the northern Alaska continuous permafrost zone (PP ≥ 90%). The 
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model simulations, radar retrievals and in situ measurements all showed the lowest ALT values (< 40 cm) at the most 

northern site (West Dock) within the DH sub-region, but with larger differences at the other DH sites. The model simulations 

were very close to the radar ALT retrievals at the Deadhorse and Franklin Bluff sites, and similar to the in situ observations 

at the Sagwon Hills site, though the radar ALT retrievals indicated shallower ALT conditions than both model results and 

observations at this site. The radar retrievals likely underestimated ALT for the Sagwon Hills area due to very wet soil 5 

conditions observed at this site (SM > 0.4 m
3
 m

-3
, Figure S3), which reduced microwave penetration depth and active layer 

sensitivity. The soil moisture impact on the radar ALT retrievals is indicated by a significant negative correlation (R < -0.45, 

p < 0.1) between the radar ALT and SM retrievals at both Sagwon Hills sites. Relatively large differences were observed 

between the modelled ALT values and in situ observations at the Deadhorse and Franklin Bluff sites, though the model 

results were similar to the radar ALT retrievals at these sites. Despite these differences, the modeled ALT showed overall 10 

consistent inter-annual variability (R > 0.5, p < 0.1) for all of the DH sub-region sites except West Dock, which had a deeper 

organic layer and smaller ALT inter-annual variability than the other sites (Figure S9 and Table 2). 

 

The regional model sensitivity analyses for the DH sub-region between 69.5°N and 70°N indicates the important role of the 

SOC fraction on the model simulated ALT pattern (Figure 4c and Table 3). The DH sub-region was selected for the model 15 

sensitivity analysis due to lower uncertainties in the airborne radar ALT and SM retrievals as discussed in Section 2.3.2. 

Using the spatial average of the radar ALT retrievals (39.59 ± 0.06 cm), the soil model estimated a mean soil porosity of 

0.61 m
3
 m

-3
, and mean soil wetness of 63% for the active layer, which was close to the soil wetness estimates for the same 

area derived from the SMAP L4SM product (62% - 66%). The soil model simulations derived using the 1-km MODIS LST 

inputs and regional mean SOC and SM inputs (Run1) showed a slightly smaller mean ALT of 37.90 ± 0.04 cm. Model 20 

simulations derived using the 1-km MODIS LST and airborne radar SM retrievals as inputs (Run2) showed a similar ALT 

distribution as the Run1 results, but with larger spread (40.36 ± 0.11 cm). The soil model simulations based on similar inputs 

as Run1, but accounting for the statistical distribution of the regional SOC inputs (Run3) resulted in a more consistent ALT 

spatial distribution with the radar ALT retrievals (mean ALT = 41.61 ± 0.07 cm). The effect of snow cover heterogeneity on 

the ALT distribution was not investigated here due to the coarse resolution of the MERRA-2 snow data (~ 0.5°) and thus 25 

small differences in the interpolated 1-km snow depth and density data within the sub-region.    

3.2 Regional ALT sensitivity to environmental variables 

The model results indicated widespread ALT deepening during the 2001-2015 study period, with 79.2% of simulated 

permafrost (ALT < 300 cm) areas showing positive trends (Figure 5). However, only ~ 24.0% of estimated permafrost areas 

showed significant (p < 0.1) positive ALT trends due to large interannual variability in model simulated ALT and relatively 30 

short (15-year) data record. Very few areas (< 0.3% of the domain) showed significant negative ALT trends. The model 

simulations showed relatively smaller ALT trends (0.32 ± 1.18 cm yr
-1

) in continuous permafrost areas of northern Alaska, 

which has a generally colder polar climate and more stable permafrost conditions. The model results indicated much larger 
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positive ALT trends (> 3 cm yr
-1

) across central and southern Alaska, which is characterized by warmer climate conditions 

and more sporadic permafrost conditions (PP < 50%). Both modelled ALT and associated temporal trends generally increase 

with decreasing permafrost probability (Figure 3 and Figure 5). Relatively large spatial variability in the estimated ALT 

trend also occurs in areas with lower permafrost probability. 

 5 

The ALT trends and spatial variations are mainly affected by the accumulated thawing degree days during the snow-free 

period (R = 0.60 ± 0.32, Figure 5b and Table S4). Model simulated ALT during the study period was significantly correlated 

with MODIS LST thawing degree days during the snow-free period, with regional mean correlations above 0.51 (p < 0.1) for 

areas with PP ≥ 20%. The MODIS LST record indicates a strong warming trend in spring (0.095 ± 0.09 °C yr
-1

) and a non-

significant warming trend in summer (0.006 ± 0.066 °C yr
-1

), which leads to a longer snow-free season and associated 10 

increase in the heat input to the soil. The warming trend is commensurate with a positive trend in MODIS LST thawing 

degree days during the snow-free season (0.415 ± 0.982 °C yr
-1

). Both the MODIS snow cover product and the MERRA-2 

snow depth data show significant lengthening of the snow-free season in central and southwestern Alaska (Figure 6), mainly 

due to earlier snow offset in spring. The autumn snow onset trend is more variable across the region, and an overall earlier 

snow onset in northern Alaska mainly contributes to a shorter snow season in those areas. A reduced correlation between 15 

MODIS LST thawing degree days and model simulated ALT in areas with PP < 20% is likely caused by larger uncertainties 

in the model simulations in these areas as discussed below.  

3.3 Uncertainties in regional ALT simulations 

The model sensitivity analysis indicated significant uncertainties influencing estimated ALT patterns and trends from several 

sources (Figure 7). The model simulated ALT is associated with large uncertainties in areas with lower SOC fraction 20 

(particularly for surface conditions) and lower permafrost probability. Uncertainties in the model simulated ALT due to 

uncertainties in the total SOC content increases from a few centimetres (~ 5%) in continuous permafrost areas to 

approximately 50 cm (~ 45%) in sporadic permafrost areas. ALT uncertainties due to the soil carbon vertical distribution 

show a similar pattern, but with slightly lower magnitude. In areas where PP < 70%, the model simulated mean ALT 

increased by 26% and the loss of model simulated permafrost areas with ALT < 300 cm doubled with reduced total SOC 25 

content (Table S5 and Figure 8). In comparison, model simulated areas with ALT < 300 cm in areas where PP ≥ 70% 

showed negligible response to SOC variability due to predominantly shallower ALT in these areas. Here, the ALT < 300 cm 

threshold is used to define the boundary of model estimated near surface permafrost extent over the Alaska domain. Larger 

variability in the model simulated mean ALT and accelerated permafrost loss in areas defined by PP < 70% were also 

observed when less SOC was allocated in the surface soils (e.g. “even” allocation scenario). The inverse relationship 30 

between surface SOC fraction and ALT in the model reflects the strong insulating effect of surface organic soils.  
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The results indicated large model uncertainty associated with the representation of snow cover conditions, particularly the 

low snow density scenario (Table S6 and Figure 7b). For the low snow density scenario, the model simulated ALT increased 

by 56% from 61 cm (baseline) in the more continuous permafrost zone (PP ≥ 70%), and by 49% from 146 cm in areas with 

PP < 70%, while the model simulated loss of areas with ALT < 300 cm in the permafrost zone (PP < 70%) from 2001 to 

2015 doubled compared with the baseline simulation. The model results also showed significant (p < 0.01) loss of areas with 5 

ALT < 300 cm even in areas with PP ≥ 70% for the low snow density scenario. However, the model may overestimate 

uncertainties associated with the low snow density scenario. The MERRA-2 snow density generally ranges from 200 to 250 

kg m
-3

 during the snow season, which is near the lower range of previous estimates especially for maritime and tundra snow 

cover (Sturm et al., 2010; Bormann et al., 2013). The MERRA-2 snow density did not show a significant low bias compared 

with the PBO site observations; however, the MERRA-2 snow depth data generally showed positive bias compared with the 10 

PBO snow depth data (not shown), which may lead to an overestimation of MERRA-2 snow density. Therefore, the model 

simulations from the low snow density scenario may significantly overestimate snow insulation effects and ALT uncertainty, 

especially in southwestern Alaska with more variable snow cover conditions.  

 

The uncertainty contributed from the SMAP SM data to modelled ALT is relatively small compared with SOC distribution 15 

and snow density contributions (Figure 7b). The model simulations for the “high SM” scenario promoted generally deeper 

ALT levels and slightly larger loss of permafrost areas (ALT < 300 cm) in the permafrost zone (PP < 70 %) than the baseline 

simulations due to enhanced effects of SM on soil heat transfer and heat storage (Table S5). The ALT sensitivity to SM 

showed limited variability under different SOC levels (Figure S10). However, the accuracy of SMAP SM data in boreal and 

tundra ecosystems requires further investigation. In addition, the SMAP SM data did not account for SM redistribution 20 

associated with permafrost degradation during the study period, which may have a significant impact on soil heat transfer 

especially in discontinuous and sporadic permafrost areas. 

4. Discussion   

Our model estimates of regional permafrost active layer conditions over Alaska are generally consistent with previous 

studies. A study using an empirical data fusion and modelling approach incorporating extensive field observations and 25 

spatial environmental datasets (Pastick et al., 2015) estimated that near-surface (< 100 cm) permafrost encompasses 38% of 

mainland Alaska, with a mean ALT of 50 cm. Our model baseline simulations indicate a similar near-surface (< 100 cm) 

permafrost extent encompassing ~ 40% of the Alaska domain, with a mean ALT of 58 cm. Another study using spatially 

referenced soil profile data and environmental variables produced ALT estimates across Alaska ranging from 14 to 93 cm, 

with a spatial average of 46 cm (Mishra and Riley, 2014). A follow-on study estimated the mean ALT across Alaska to be 30 

between 42 cm and 49 cm with 95% confidence (Mishra et al., 2016). Both studies indicate a dominant existence of near-

surface permafrost across the Alaskan domain, which is larger than our model results and the previous study by Pastick et al. 
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(2015). Our model predicts relatively stable permafrost conditions in continuous permafrost areas during the study period, 

which is consistent with previous reports (Osterkamp, 2007; Jafarov et al., 2012; Nicolsky et al., 2017). Our estimate of the 

ALT trend in those areas (0.32 ± 1.18 cm yr
-1

) is also comparable with a regional modelling experiment in Northern Alaska 

(Nicolsky et al., 2017).  

 5 

Our model results indicate widespread active layer deepening in the study domain from 2001 to 2015, with generally larger 

positive trends (> 3 cm yr
-1

) in discontinuous and sporadic permafrost areas including central and southern Alaska, and 

smaller trends (~ 0.32 cm yr
-1

) over colder and more continuous permafrost areas of northern Alaska (Figure 5). Our analysis 

indicates that a longer snow-free period and concurrent surface warming are mainly responsible for ALT deepening during 

the study period. Previous studies have also noted that the ALT is primarily determined by the cumulative thermal history of 10 

the ground surface during the summer thaw season (Zhang et al., 2005; Osterkamp, 2007). A few studies based on satellite 

observations and modelling indicate that regional warming and a longer thaw season have led to widespread permafrost 

degradation and active layer deepening in permafrost areas (Yi et al., 2015; Park et al., 2016). Alaska shows a strong spring 

warming trend during the study period, which results in significantly earlier snow melt and a longer snow free season. Early 

snow melting in the spring increases energy inputs into soils and generally enhances soil warming, which may promote ALT 15 

deepening and permafrost degradation due to the snow cover-climate feedback (Lawrence and Slater, 2010). On the other 

hand, the snow onset shows more variable trends across the region, with northern Alaska generally showing an earlier snow 

onset trend. However, the relationship between autumn snow onset and soil warming is more variable depending on the 

timing of snowfall and local climate conditions (Yi et al., 2015). Early snow onset may enhance thermal buffering of cold 

surface temperatures, and promote soil warming in colder climate zones (Zhang, 2005).  20 

 

Our results indicated large uncertainties in model estimated ALT associated with uncertainties in both the spatial variability 

and vertical distribution of SOC. Soil organic matter is a key factor affecting permafrost active layer processes due to its 

effects on soil thermal and hydraulic properties (Lawrence and Slater, 2008). There are substantial differences among 

available SOC datasets in northern permafrost areas, partially due to insufficient field data sampling and strong SOC 25 

variability associated with local vegetation, terrain, disturbance and soil moisture heterogeneity (Ping et al., 2008; Johnson et 

al., 2011). A relatively fine-resolution (~ 50 m) SOC dataset generated using more than 500 soil profiles in Alaska was used 

to parametrize the model SOC distributions. However, the SOC dataset may still underestimate SOC variability associated 

with large heterogeneity characteristic in boreal and arctic landscapes. An integrated analysis of the airborne radar retrievals 

and soil process model sensitivity runs over the DH sub-region (Figure 4) showed that the model can better simulate ALT 30 

spatial heterogeneity after introducing a statistical distribution of the regional SOC spatial pattern. The model sensitivity 

analysis also showed that uncertainty in the vertical SOC distribution contributes significantly to the model estimated ALT 

uncertainty (Figure 8) due to strong insulation effects of surface organic soils (Jafarov and Schaefer, 2016). The SOC content 

was assumed to decrease exponentially with increasing depth from the surface (Eq. 1), which may significantly 
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underestimate the SOC of deep soils in areas strongly affected by cryoturbation (Ping et al., 2008; Burnham and Sletton, 

2010). However, this process should have a relatively limited effect on the estimated soil carbon fraction due to general 

increases in soil bulk density and thus lower soil carbon concentration with depth (Hossain et al., 2015).  Better information 

on the spatial and vertical distribution of SOC stocks would provide the single largest improvement in ALT accuracy, 

enabling more accurate predictions of permafrost active layer processes and climate feedbacks in regional and global carbon 5 

and climate models (Zhang et al., 2014; Mishra and Riley, 2015). 

 

The effects of soil organic matter on ground temperature evolution are also influenced by soil moisture content, which 

affects soil thermal conductivity and heat exchange processes (Hinkel and Nelson, 2003; Nicolsky et al., 2017). Our study 

may underestimate the modeled ALT uncertainties associated with SMAP SM data. Large uncertainty is associated with 10 

global reanalysis or satellite SM data (Yi et al., 2011). This uncertainty is due to many factors, including insufficient 

understanding of the effect of permafrost-thaw induced transitions on active layer hydrology (Rawlins et al., 2013), and the 

predominance of wet soil conditions and standing water in permafrost landscapes, which constrains satellite microwave 

penetration and sensitivity to active layer properties (Du et al., 2015). The SMAP SM data did not account for soil drainage 

and soil moisture redistribution with permafrost thaw and ALT deepening (Walvoord et al., 2016), which may result in 15 

overestimation of ALT trends in areas with deep active layers and wet soil conditions, characteristic of much of western 

Alaska (Figure 5). Our initial model sensitivity analysis over the DH sub-region did not show significant improvement in 

ALT results using fine-resolution (~ 50 m) airborne radar SM retrievals. The lack of model improvement may be due to 

uncertainty in the dielectric conversion model parameters used for the radar SM retrieval, but may also indicate a need for 

better parameterization of soil moisture effects on model soil heat transfer processes. A close association between SOC and 20 

local topographic attributes, including soil wetness, has been reported (Mishra and Riley, 2015); this may explain why model 

simulations derived using a statistical SOC distribution following the radar SM pattern produced better ALT performance 

relative to the radar retrievals. Other potential geophysical retrievals from multi-frequency radar remote sensing, including 

SOC, freeze-thaw and SM profile (Du et al., 2015; Bartsch et al., 2016), may enable improved model representation of 

processes affecting permafrost active layer conditions.  25 

 

Other uncertainties in the model inputs and structure may also result in large uncertainties in our regional ALT estimates. 

Large-scale satellite observations and global reanalysis data are unable to resolve finer scale microclimate variations 

influencing the ground thermal regime, including spatially complex snow cover properties influenced by local topography, 

vegetation and winds (Liston and Sturm, 1998; Gisnas et al., 2016). These effects may be more pronounced over more 30 

complex terrain, including southwest Alaska, where the model shows larger uncertainties in ALT simulations and trends 

(Figure 5). The model uses satellite skin temperature (i.e. MODIS LST) to define the upper boundary conditions, which does 

not account for vegetation canopy effects on ground thermal conditions, and may add significant uncertainties in dense 

vegetation areas. Increasing disturbance from thermokarst and wildfire alter microclimate and SM conditions, vegetation 
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cover and SOC stocks, triggering a series of physical and ecological changes, all closely related to the dynamics of ground-

ice evolution and permafrost degradation (Jorgenson et al., 2006; Osterkamp et al., 2009; Grosse et al., 2011). These effects 

are not adequately represented by the current model. Additional airborne radar sampling targeting regional disturbance 

gradients may provide the necessary information for representing these processes in the regional modelling framework.   

5. Conclusions   5 

We developed a satellite-based modelling framework for permafrost active layer mapping at landscape scale (~ 1 km) and 

applied it to the Alaskan domain. Local scale (~ 50 m resolution) maps of ALT and SM derived from combined low 

frequency (L+P-band) airborne radar remote sensing were used with in situ ground measurements to evaluate the model 

simulations. The model estimated ALT was more similar to in situ observations and airborne radar retrievals in more 

continuous permafrost areas (PP ≥ 70%) than in lower permafrost probability areas. The model simulations indicated 10 

widespread active layer deepening since 2001, with larger positive trends in discontinuous and sporadic permafrost areas 

over central and southern Alaska, and generally smaller trends in colder and more stable permafrost areas of northern 

Alaska. The ALT deepening is mainly driven by surface warming and regional trends toward a longer snow-free season. 

Areas with lower SOC fraction, especially in surface soil layers, showed larger ALT uncertainties and stronger sensitivity to 

regional warming trends. A spatially integrated analysis of the airborne longwave (P+L-band) radar retrievals and model 15 

simulations confirmed the important role of SOC spatial variability and vertical profiles in affecting ALT accuracy. 

Additional AirMOSS/UAVSAR radar measurements will become available from the ABoVE airborne campaign in Alaska 

and western Canada, representing more extensive climate, terrain and vegetation conditions, and allowing for further testing 

and refinement of the modelling framework across a larger domain. Potential mapping of surface organic layer, freeze-thaw 

and soil moisture profiles using the combined low frequency radar data may enable substantial improvements in the way 20 

coarser landscape models represent key processes and sub-grid spatial heterogeneity, enabling more accurate predictions of 

boreal and arctic environmental changes.  

 

Data availability. The Alaskan ALT maps produced by this study are available at http://ntsg.umt.edu and will be archived 

and distributed for public access through the NASA ABoVE archive at the NASA ORNL DAAC (https://daac.ornl.gov/). 25 

The radar ALT and SM retrievals are available upon request. Other data used in this study were obtained from free and open 

data repositories.  
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Table 1:  Geospatial datasets used as primary inputs for the soil process model over Alaska.   

 Data source Spatial resolution Temporal period Temporal resolution 

Surface temperature MOD11A2*  1 km 2000-present 8-day 

Snow depth/density MERRA-2 0.5° 2000-present Daily 

Snow cover extent MOD10A2† 500 m 2000-present 8-day 

Soil moisture SMAP  9 km 2001-2015 (NatureRun) 

2015-present (L4SM) 

Daily 

* Wan et al., 2015; † Hall and Riggs, 2016 
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Table 2:  In situ CALM sites covered by the UAVSAR and AirMOSS airborne radar flights along the Dalton Highway (DH) in 

October 2015. The information on OLT and soil moisture conditions was obtained from in situ site measurements. The local scale 

(~ 50 m resolution) radar ALT retrievals were averaged within an 18 × 18 pixel window (~ 1 km × 1 km) to compare with the 1-km 

soil model ALT simulations. The correlations (R) between the in situ observations and model ALT estimates were calculated for 

the 2001-2015 study period.  5 

Site name  Location OLT 

(cm) 

Soil moisture 

condition 

ALT (cm) 

  In situ        Radar      model  

R 

(in situ vs model) 

West Dock 1 ha grid 70°22ʹN, 148°33ʹW 34  wet    37.0        29.7 ± 0.13    33.0 0.27 

Deadhorse 70°10ʹN, 148°28ʹW 15 wet    73.0        44.2 ± 0.10    44.0 0.61* 

Franklin Bluff 69°41ʹN, 148°43ʹW 23 wet    68.0        41.6 ± 0.11    44.0 0.53* 

Sagwon Hills MNT 69° 26ʹN, 148°40ʹW 9 ± 1.2 moist    57.0        36.8 ± 0.08    53.0 0.53* 

* indicates p < 0.05 
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Table 3: Model drivers for the three model sensitivity runs conducted within the Alaska DH sub-region. The model LST and SM 

inputs were derived from MODIS (MOD11A2) observations and airborne radar SM retrievals.  

 LST  SM  SOC  

Run1 1-km Regional mean  Regional mean 

Run2 1-km 1-km Regional mean 

Run3 1-km Regional mean  Statistical distribution* 

* The statistical distribution of SOC followed the statistical distribution of 1-km radar SM retrievals for areas between 69.5°N and 70°N 

(Figure S3 c).  
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Figure 1: Flow diagram describing the regional model sensitivity runs, accounting for uncertainties in total SOC content, SOC 

vertical distribution, SM and snow density (ρsnow). Three SOC vertical allocation schemes were represented, including “surface”, 

baseline and “even” allocation scenarios (Table S2).  5 
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Figure 2: Model simulated mean (2001-2015) soil thawing depth at the boreal forest (a: AK-PFR) and tundra (b: AK-Imn) sites, 

relative to in situ ALT values. At the AK-PFR site, the in situ ALT value reported at Nakai et al. (2013) was different from the 

ALT value calculated from in situ soil temperature (Tsoil) measurements, while at the tundra site, the in situ ALT was calculated 

from CALM site observations located within the IMNAVAIT 1-km model grid cell encompassing the AK-Imn tower site. Vertical 5 
error bars and dark gray shading indicate 1 standard deviation variability in soil thaw depth or ALT during the study period.  
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Figure 3: Model simulated ALT and its performance against in situ CALM sites for different permafrost probability (PP) zones: 

(a) model simulated 1-km mean ALT map from 2001 to 2015; (b) a satellite-based permafrost probability map (Pastick et al., 

2015); (c) comparisons of model simulated ALT against in situ CALM sites for different PP zones; (d) the changes of model and in 5 
situ observed ALT with permafrost probability. The areas with ALT greater than 300 cm depth are shown in dark gray (a). In 

panel (b), the areas with PP ≥ 70% are shown in gray, while areas outside of the PP classification are shown in black. The blue line 

in panel (b) indicates the location of the airborne DH radar flight transect used for model evaluation (Figure 4). The error bars in 

(c) represent the standard deviation of either model simulated or in situ observed ALT during the overlapping period.   
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Figure 4: Comparison of radar ALT retrievals with in situ CALM site observations and model simulations within the Alaska 

Dalton Highway (DH) sub-region defined from the airborne radar (AirMOSS, UAVSAR) flight transect in October, 2015: a) the 

radar retrieved ALT map from the combined (P+L-band) low frequency radar backscatter measurements, with areas indicated as 5 
open water, perennial ice/snow and developed areas masked out; b) comparisons of the in situ ALT observations, radar retrievals 

and model simulations at the CALM sites, including West Dock (WD), Deadhorse (DHS), Franklin Bluff (FB), and Sagwon Hills 

MNT (SH); c) comparisons of the ALT spatial distributions derived from the radar retrievals and model simulations for the DH 

latitudinal zone between 69.5 and 70°N. Different model runs were driven using different regional drivers (Table 3). ALT_avg is 

the regional mean of radar ALT retrievals with error bars representing the standard deviation.  10 

 

  



29 

 

 

 

Figure 5: Model simulated ALT trends and correlation with LST thawing degree days from 2001 to 2015: (a) simulated ALT 

trends over the Alaska domain, where areas with ALT > 3 m are shown in dark gray; (b) the distribution of ALT trends and 

correlations with MODIS LST degree days during the snow free season (upper panel) within different permafrost probability (PP) 5 
zones (Figure 3b); vertical error bars (dark gray) indicate 1 standard deviation for the regional ALT trend and correlation 

coefficient, respectively. The number of 1km pixels represented within each PP zone is shown in the lower panel (b).  
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Figure 6: Recent trends (days yr-1, 2001-2015) in the annual snow-free period derived from the MODIS snow cover extent (SCE) 

product (MOD10A2, a) and the MERRA-2 snow depth data after filtering using the MOD10A2 SCE observations (b).  
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Figure 7:  Model estimated ALT uncertainty associated with uncertainties in SOC fraction, SM and snow cover properties: (a) 

spatial pattern of model simulated ALT uncertainty due to uncertainty in the total SOC content; the areas without consistent near-

surface (< 300 cm) permafrost from all sensitivity runs were shown as dark gray. (b) shows the distribution of model mean ALT 5 
uncertainties associated with uncertainties in total SOC content, soil carbon allocation, soil moisture and snow density for different 

permafrost zones (Figure 3b). The ALT uncertainties were calculated as the standard deviation between the model baseline 

simulations and the sensitivity runs by adding uncertainties in the regional SOC map, soil moisture and snow density data (Figure 

1).  
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Figure 8: The sensitivity of model simulated ALT to different SOC levels in two different permafrost probability (PP) zones 

(Figure 3b): (a) the model simulated mean ALT derived for different SOC levels, where error bars represent the variability in 

model simulated ALT due to different SOC allocation schemes (i.e. surface or even allocation); (b) shows the trends (% yr-1, 2001-5 
2015) in model simulated areas with ALT < 300 cm in the lower permafrost probability zone (PP < 70%) in proportion to model 

simulations in 2000.  

 

 


